RRT* Combined with GVO for Real-time Nonholonomic Robot Navigation in Dynamic Environment
نویسندگان
چکیده
Challenges persist in nonholonomic robot navigation for dynamic environments. This paper presents a framework for nonholonomic robot navigation in dynamic environment based on the model of Generalized Velocity Obstacles (GVO). The idea of velocity obstacles has been well studied and developed for obstacle avoidance since proposed in 1998. Though proved to be successful, most studies assume equations of motion to be linear, which limit the application to holonomic robots. In addition, more attention has been paid to the immediate reaction of robots while advance planning has always been ignored. By applying GVO model to differential drive robots and combining it with RRT*, we reduce the uncertainty of robot trajectory, thus further reduce the concerned range, and save both computation time and running time. By introducing uncertainty for the dynamic obstacles by Kalman filter, we reduce the risk of considering obstacles to uniformly move along a straight line and guarantee the safety. Special concern has been given to the path generation, including curvature check, making the generated path feasible for nonholonomic robots. We experimentally demonstrated the feasibility of the framework.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملA New Method of Mobile Robot Navigation: Shortest Null Space
In this paper, a new method was proposed for the navigation of a mobile robot in an unknown dynamic environment. The robot could detect only a limited radius of its surrounding with its sensors and it went on the shortest null space (SNS) toward the goal. In the case of no obstacle, SNS was a direct path from the robot to goal; however, in the presence of obstacles, SNS was a space around the r...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.07102 شماره
صفحات -
تاریخ انتشار 2017